< Back to 68k.news US front page

Vestiges of a lunar ilmenite layer following mantle overturn revealed by gravity data

Original source (on modern site)

References

  1. Hiesinger, H., Head, J. W. III, Wolf, U., Jaumann, R. & Neukum, G. in Recent Advances and Current Research Issues in Lunar Stratigraphy vol. 477 (eds Ambrose, W. A., & Williams, D. A.) 1-51 (Geological Society of America, 2011).

  2. Head, J. W. Lunar mare deposits: areas, volumes, sequence, and implication for melting in source areas. In Conference on the Origins of Mare Basalts and their Implications for Lunar Evolution vol. 234, 66-69 (1975).

  3. Wieczorek, M. A. & Phillips, R. J. The 'Procellarum KREEP Terrane': implications for mare volcanism and lunar evolution. J. Geophys. Res. Planets 105, 20417-20430 (2000).

    Article  CAS  Google Scholar 

  4. Lucey, P. G., Spudis, P. D., Zuber, M., Smith, D. & Malaret, E. Topographic-compositional units on the moon and the early evolution of the lunar crust. Science 266, 1855-1858 (1994).

    Article  CAS  Google Scholar 

  5. Sato, H. et al. Lunar mare TiO2 abundances estimated from UV/Vis reflectance. Icarus 296, 216-238 (2017).

    Article  CAS  Google Scholar 

  6. Shearer, C. et al. Magmatic evolution II: a new view of post-differentiation magmatism. Rev. Mineral. Geochem. 89, 147-206 (2023).

    Article  Google Scholar 

  7. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon's interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501-514 (1995).

    Article  CAS  Google Scholar 

  8. Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326-336 (2011).

    Article  CAS  Google Scholar 

  9. Schaefer, L. & Elkins-Tanton, L. T. Magma oceans as a critical stage in the tectonic development of rocky planets. Philos. Trans. Royal Soc. A 376, 20180109 (2018).

    Article  Google Scholar 

  10. Schmidt, M. W. & Kraettli, G. Experimental crystallization of the lunar magma ocean, initial selenotherm and density stratification, and implications for crust formation, overturn and the bulk silicate moon composition. J. Geophys. Res. Planets 127, e2022JE007187 (2022).

    Article  CAS  Google Scholar 

  11. Zhong, S., Parmentier, E. M. & Zuber, M. T. A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet. Sci. Lett. 177, 131-140 (2000).

    Article  CAS  Google Scholar 

  12. Zhang, N., Parmentier, E. M. & Liang, Y. A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: the importance of rheology and core solidification. J. Geophys. Res. Planets 118, 1789-1804 (2013).

    Article  CAS  Google Scholar 

  13. Elkins Tanton, L. T., Van Orman, J. A., Hager, B. H. & Grove, T. L. Re-examination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required. Earth Planet. Sci. Lett. 196, 239-249 (2002).

    Article  CAS  Google Scholar 

  14. Prettyman, T. H. et al. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector. J. Geophys. Res. Planets 111, E12007 (2006).

    Article  Google Scholar 

  15. Zhu, M.-H., Wünnemann, K., Potter, R. W. K., Kleine, T. & Morbidelli, A. Are the Moon's nearside-farside asymmetries the result of a giant impact? J. Geophys. Res. Planets 124, 2117-2142 (2019).

    Article  Google Scholar 

  16. Jutzi, M. & Asphaug, E. Forming the lunar farside highlands by accretion of a companion moon. Nature 476, 69-72 (2011).

    Article  CAS  Google Scholar 

  17. Schultz, P. H. & Crawford, D. A. in Recent Advances and Current Research Issues in Lunar Stratigraphy vol. 477 (eds Ambrose, W. A. & Williams, D. A.) 141-159 (Geological Society of America, 2011).

  18. Parmentier, E. M., Zhong, S. & Zuber, M. T. Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP? Earth Planet. Sci. Lett. 201, 473-480 (2002).

    Article  CAS  Google Scholar 

  19. Jones, M. J. et al. A South Pole-Aitken impact origin of the lunar compositional asymmetry. Sci. Adv. 8, eabm8475 (2022).

    Article  CAS  Google Scholar 

  20. Zhang, N. et al. Lunar compositional asymmetry explained by mantle overturn following the South Pole-Aitken impact. Nat. Geosci. 15, 37-41 (2022).

    Article  CAS  Google Scholar 

  21. Zuber, M. T. et al. Gravity field of the moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Science 339, 668-671 (2013).

    Article  CAS  Google Scholar 

  22. Andrews-Hanna, J. C. et al. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature 514, 68-71 (2014).

    Article  CAS  Google Scholar 

  23. Liang, W. & Andrews-Hanna, J. C. Probing the source of ancient linear gravity anomalies on the Moon. Icarus 380, 114978 (2022).

    Article  Google Scholar 

  24. Li, H. et al. Lunar cumulate mantle overturn: a model constrained by ilmenite rheology. J. Geophys. Res. Planets 124, 1357-1378 (2019).

    Article  CAS  Google Scholar 

  25. Andrews-Hanna, J. C. et al. Ancient igneous intrusions and early expansion of the moon revealed by GRAIL gravity gradiometry. Science 339, 675-678 (2013).

    Article  CAS  Google Scholar 

  26. Liang, W. Gravity_anomaly_mcmc: 1.0. Zenodo https://doi.org/10.5281/zenodo.10622788 (2024).

  27. Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671-675 (2013).

    Article  CAS  Google Scholar 

  28. Broquet, A. Displacement_strain_planet: 0.5. Zenodo https://doi.org/10.5281/zenodo.10552129 (2024).

  29. Broquet, A. & Andrews-Hanna, J. C. Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars. Nat. Astron. 7, 160-169 (2023).

    Google Scholar 

  30. Broquet, A. & Andrews-Hanna, J. C. The Moon before mare. Icarus 428, 115846 (2024).

    Article  Google Scholar 

  31. Williams, N. R. et al. Evidence for recent and ancient faulting at Mare Frigoris and implications for lunar tectonic evolution. Icarus 326, 151-161 (2019).

    Article  Google Scholar 

  32. Freed, A. M. et al. The formation of lunar mascon basins from impact to contemporary form. J. Geophys. Res. Planets 119, 2378-2397 (2014).

    Article  Google Scholar 

  33. Orgel, C. et al. Ancient bombardment of the inner solar system: reinvestigation of the 'fingerprints' of different impactor populations on the lunar surface. J. Geophys. Res. Planets 123, 748-762 (2018).

    Article  CAS  Google Scholar 

  34. Huang, Y. H., Soderblom, J. M., Minton, D. A., Hirabayashi, M. & Melosh, H. J. Bombardment history of the Moon constrained by crustal porosity. Nat. Geosci. 15, 531-535 (2022).

    Article  CAS  Google Scholar 

  35. Garrick-Bethell, I. et al. Troctolite 76535: a sample of the Moon's South Pole-Aitken basin? Icarus 338, 113430 (2020).

    Article  CAS  Google Scholar 

  36. Melosh, H. J. Planetary Surface Processes (Cambridge Univ. Press, 2011).

  37. Miljković, K. et al. Subsurface morphology and scaling of lunar impact basins. J. Geophys. Res. Planets 121, 1695-1712 (2016).

    Article  Google Scholar 

  38. Zhao, Y., de Vries, J., van den Berg, A. P., Jacobs, M. H. G. & van Westrenen, W. The participation of ilmenite-bearing cumulates in lunar mantle overturn. Earth Planet. Sci. Lett. 511, 1-11 (2019).

    Article  Google Scholar 

  39. Zhang, N., Dygert, N., Liang, Y. & Parmentier, E. M. The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. Geophys. Res. Lett. 44, 6543-6552 (2017).

    Article  CAS  Google Scholar 

  40. Wieczorek, M. A. Gravity and Topography of the Terrestrial Planets. in Treatise on Geophysics 10, 153-193 (Elsevier, 2015).

  41. Elbeshausen, D., Wünnemann, K. & Collins, G. S. The transition from circular to elliptical impact craters. J. Geophys. Res. Planets 118, 2295-2309 (2013).

    Article  Google Scholar 

  42. Zhong, S., McNamara, A., Tan, E., Moresi, L. & Gurnis, M. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008).

    Article  Google Scholar 

  43. Wieczorek, M. A. & Phillips, R. J. Potential anomalies on a sphere: applications to the thickness of the lunar crust. J. Geophys. Res. Planets 103, 1715-1724 (1998).

    Article  Google Scholar 

  44. Wieczorek, M. A. & Meschede, M. SHTools: tools for working with spherical harmonics. Geochem. Geophys. Geosyst. 19, 2574-2592 (2018).

    Article  Google Scholar 

  45. Lemoine, F. G. et al. GRGM900C: a degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 41, 3382-3389 (2014).

    Article  Google Scholar 

  46. Smith, D. E. et al. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37, L18204 (2010).

    Article  Google Scholar 

  47. Kiefer, W. S., Macke, R. J., Britt, D. T., Irving, A. J. & Consolmagno, G. J. The density and porosity of lunar rocks. Geophys. Res. Lett. 39, L07201 (2012).

    Article  Google Scholar 

  48. Andrews-Hanna, J. C. et al. Ring faults and ring dikes around the Orientale basin on the Moon. Icarus 310, 1-20 (2018).

    Article  Google Scholar 

  49. Nagy, D. The gravitational attraction of a right rectangular prism. Geophysics 31, 362-371 (1966).

    Article  Google Scholar 

  50. Chib, S. & Greenberg, E. Understanding the metropolis-hastings algorithm. Am. Stat. 49, 327-335 (1995).

    Article  Google Scholar 

  51. Jansen, J. C. et al. Small-scale density variations in the lunar crust revealed by GRAIL. Icarus 291, 107-123 (2017).

    Article  Google Scholar 

Download references

< Back to 68k.news US front page